

CARBO S- 4370 Si **CARBO T- 4370**

International standards

	S = solid wire $T = bare rod$					
Mat. No.	1.4370					
DIN 8559	G 18 8 Mn	W 18 8 Mn				
AWS A 5.7	≈ ER307mod.	≈ ER307 mod.				

Approvals TÜV. DB. CE TÜV, DB, CE

Application notes

Solid wire electrode of type 18 8 Mn for numerous applications. Suitable for welding difficult-to-weld, crack-sensitive steels with > 0.7 % carbon content and for joint welding of and surfacing on heat resistant stainless steels and castings.

Suitable for joint welding of austenitic to ferritic steels which are exposed to service temperatures of -110° above 500° C.

Furthermore it can be used for welding equalizing buffer layers prior to hardfacing and for repair welding of manganese steels. Stainless, heat resistant weld metal, non-scaling up to 850° C and resistant to sulphurous waste gases at temperatures up to 500° C.

The weld metal alloy is case hardening and non-magnetic Hardness after strain-hardening: approx. 340 HB

Operating temperature -110° C up to +300° C

Base materials Combined compound of 1.4583 with HI/HII, 17 Mn 4, StE 355

1.4583 with P235GH / P256GH, P295GH, P355N

Surfacing on rails with an Rm of 685 N/mm²

Mechanical properties of all-weld-metal, untreated as welded (gas: Argon)

Tensile strength R _m N/mm²	Yielding strength R _{p0,2} N/mm ²	Elongation A ₅ %	Impact ISO - at 20°C	strength - V J at 110°C
660	450	38	120	>32

(typical values) Weld metal analysis

(typical, wt %)

С	Si	Mn	Cr	Ni		
0.08	8,0	7,0	19,2	9,0		

	S = solid wire				T = bare rod					
Gas types EN 439		M12, M13, M21			I 1					
Current	= +			= -						
Diameter	mm	0,8	1,0	1,2	1,6	1,6	2,0	2,4	3,2	4,0
Welding amps	(A) min.	80	120	180	250					
	(A) max.	130	190	250	320					
coils, weight Rev. 002/13		B300 1	5 kg.			10 kg.				

Statements on composition and application are just for the applier's information. Statements on mechanical properties always refer to the all-weld-metal according to valid standards. Carbo-Weld may change the characteristics of its products without notice. We recommend the applier to check our products for their special application autonomously.