CARBO S-1.2713
 CARBO T-1.2713

International standards

Typical applications and characteristics

Recommendations for welding and heat treatment

S = solid wire	T = bare rod	
Mat. No.		

CARBO T+S 1.2713 for high wear resistant hardfacings on hotand cold- working tools. The deposit has a crack-free $\mathrm{Cr}-\mathrm{Ni}-\mathrm{Mo}-\mathrm{Mn}-$ martensitic structure. With low carbon content. Particularly recommended for hardfacing hot- and cold-working trimming dies, pressing- and blanking dies, hot- and cold-shearblades like hot-billet-shears, blanking-,punching and coining tools, rotary-shear-knives, hot- and cold-forming- and drawing-dies.

For achieving optimal crack-free deposits preheating of the base material to 250-350 centigrade is essential.
Short runs are desirable using the step back technique.

Base materials	1.2713	55NiCrMoV6	1.2747	28NiMo17
	1.2714	56NiCrMoV7	1.2764	X19NiCrMo4
	1.2740	28NiCrMoV10	1.2766	35NiCrMo16
	1.2743	60NiCrMoV12-4	1.2767	X45NiCrMo4
	1.2744	57NiCrMoV7-7		

Mechanical properties of all-weld metal	First layer HB
(typical values)	ca. 360-420 HB

Weld metal analysis

(typical, wt \%)

\mathbf{C}	$\mathbf{S i}$	$\mathbf{M n}$	$\mathbf{C r}$	$\mathbf{N i}$	$\mathbf{M o}$	\mathbf{V}	$\mathbf{F e}$
0,25	0,30	0,5	1,45	3,60	0,40	0,2	Base

Gas types EN 439

Current		= +				= -				
Diameter	mm	0,8	1,0	1,2	1,6	1,6	2,0	2,4	3,2	4,0
Welding amps	(A) min.	80	120	180	250					
	(A) max.	130	190	250	320					

$$
\begin{array}{cc}
\mathbf{S}=\text { solid wire } & \mathbf{T}=\text { bare rod } \\
\mathrm{M} 2, \mathrm{C} 1 & \mathrm{I} 1
\end{array}
$$

